Электронные устройства на основе углеродных нанотрубок

 

Существует также применение в наноэлектронике - создание полупроводниковых гетероструктур, т.е. структур типа металл/полупроводник или стык двух разных полупроводников. В процессе роста нанотрубки создаётся в ней структурный дефект (заменяется один из углеродных шестиугольников пятиугольником и семиугольником (см. рис. 13). Тогда одна часть нанотрубки будет металлической, а другая – полупроводником.

 

электрон

 

Рис.13. Влияние дефекта семиугольник-пятиугольник на геометрию нанотрубки (а) и энергию подвижных электронов (б)

 

Необычные электрические свойства нанотрубок делают их одним из основных материалов наноэлектроники. Уже сейчас созданы опытные образцы полевых транзисторов (см. Рис.14) на основе одной нанотрубки: прикладывая запирающее напряжение в несколько вольт, ученые научились изменять проводимость однослойных нанотрубок на 5 порядков.

Рис.14. первый транзистор p типа на основе углеродных нанотрубок

 

На кремниевой подложке, покрытой изолирующим оксидным слоем толщиной 300 нм, формировали параллельные платиновые полоски шириной по 200 нм, разнесенные на расстояние около 600 нм между их осями. Нанотрубку диаметром 1.4 нм и длиной около 1 мкм укладывали поверх полос так, чтобы она перемыкала две или три Pt-полоски, образуя с ними туннельные контакты. Это позволяло носителям заряда (дырки - в углеродной нанотрубке) участвовать в создании тока между соседними Pt-электродами, служащими истоком и стоком в полученном таким способом полевом транзисторе с изолированным затвором, роль которого играла Si-подложка.

Рис.15. Полевой транзистор на полупроводниковой нанотрубке.

 

Нанотрубка лежит на непроводящей (кварцевой) подложке в контакте с двумя сверхтонкими проводами, в качестве третьего электрода (затвора) используется кремниевый слой

 

Дальнейшее развитие нанотехнологий: проблемы и перспективы.

Благодаря прорыву в области производства микроскопов, современные ученые могут манипулировать атомами и располагать их так, как им заблагорассудится. Такого еще не было за всю историю развития человечества!

Идеальная техническая система – это система, масса, габариты и энергоемкость которой стремятся к нулю, а ее способность выполнять работу при этом не уменьшается. Предельный случай идеализации техники заключается в уменьшении её размеров, (вплоть до полного "исчезновении") при одновременном увеличении количества выполняемых ею функций. В идеале – технического устройства не должно быть видно, а функции, нужные человеку и обществу должны выполняться. Закон увеличения степени идеальности гласит: развитие всех систем идет в направлении увеличения степени идеальности.

На практике хорошей иллюстрацией этого закона может служить постоянное стремление производителей микроэлектроники и бытовой техники к миниатюризации, созданию устройств всё меньших размеров, со все большими функциональными возможностями. Взять, например, те же сотовые телефоны или ноутбуки: размер все уменьшается, в то время как функциональность только растет.

Таким образом, нанотехнологии и наноустройства являются закономерным шагом на пути совершенствования технических систем. И, возможно, не последним: за областью нановеличин лежат области пико (10-12), фемто (10-15), атто (10-18) ит.д. величин, с еще неизвестными и непредсказуемыми свойствами…

В настоящее время на рынке продаются только скромные достижения нанотехнологии – такие как самоочищающиеся ткани и упаковки, позволяющие дольше сохранять свежими продукты питания. Однако ученые предсказывают триумфальное шествие нанотехнологии в недалеком будущем, опираясь на факт её постепенного проникновении во все отрасли производства.

Нанотехнология станет основой новой промышленной революции, которая приведет к созданию устройств в 100 раз более прочных, чем сталь и не уступающих по сложности человеческим клеткам. Уже создаются и будут создаваться устройства, основанные на новейших материалах с необычными свойствами. Благодаря обработке на атомарном уровне, привычные материалы будут обладать улучшенными свойствами, постепенно становясь все легче, прочнее и меньше по объему. Согласно прогнозу большинства ученых, это произойдет уже через 10-15 лет.

Однако, большие перспективы чаще всего несут с собой и большие опасности. Взять хотя бы достижения в области атомной энергии и печальные последствия Чернобыльской аварии или трагедию Хиросимы и Нагасаки. Ученые всего мира сегодня должно четко представлять себе, что подобные "неудачные" опыты или халатность в будущем могут обернуться такой трагедией, ценой которой станет существование всего человечества и планеты в целом.