МАГНИТОРЕЗИСТИВНАЯ ПАМЯТЬ MRAM - БЫСТРОДЕЙСТВУЮЩЕЕ ОЗУ И ПЗУ В ОДНОЙ МИКРОСХЕМЕ

Автор курса: доцент кафедры Вычислительной техники Осокин Александр Николаевич

ВВЕДЕНИЕ

     В современной электронике применяется несколько видов полупроводниковой памяти, различающихся по емкости (объему), рассеиваемой мощности, уровню питания, внутренней организации, типу интерфейса, быстродействию, габаритам и другим характеристикам. Производится тысячи разновидностей этих микросхем с различными параметрами, но, пожалуй, одним из главных отличий является отношение памяти к наличию питания. Одни типы (FLASH, EEPROM, OTP EPROM) способны сохранять записанные данные при выключенном питании, другие - нет. Есть и еще одно важное различие: одни виды допускают обращение по любому адресу, то есть к произвольной ячейке, а другие, в силу технологических или иных особенностей, имеют ограничения по адресации данных. Пока нет универсального варианта, разработчику, к сожалению, приходится ставить на одну плату два, три, а то и больше разных видов памяти. И каждый из них требует формирования своих, особенных диаграмм записи и чтения. Если они вырабатываются аппаратными методами, то растут габариты платы, увеличивается число ИС, снижается надежность устройства. А если формировать адреса и сигналы управления программно, то неимоверно разбухает программная часть. Да и не всегда удается достичь требуемой скорости обращения к памяти.
     Попытки создать универсальную память, обладающую достоинствами всех видов, - энергонезависимостью, малым временем доступа и произвольной адресацией, велись непрерывно. Испытывались различные физические принципы, опробовались новые материалы, разрабатывались и менялись технологии. Появились новые микросхемы памяти, причем некоторые из них стали серийным продуктом, изменились структуры ячеек памяти, яснее обозначились возможности, достоинства и недостатки различных технологий. Наконец, появились совершенно новые технические решения.

ПРЕИМУЩЕСТВА МАГНИТОРЕЗИСТИВНОЙ ПАМЯТИ

     Объем мирового рынка микросхем памяти, по некоторым оценкам, превышает 48 млрд. долл. США и продолжает расти. Чтобы выйти на рынок и не быть статистом во втором десятке производителей устройств памяти, необходимо предложить новый, уникальный продукт, сочетающий в себе преимущества всех распространенных технологий: энергонезависимое хранение данных практически неограниченное время без необходимости регенерации, скорость чтения/записи, сравнимую с лидирующей на сегодняшний день технологией SRAM, неограниченное число циклов стирания/записи данных, высокую масштабируемость и плотность ячеек для создания микросхем памяти различного объема. Задача на первый взгляд невыполнима, однако наиболее близко к её решению подошла технология MRAM. Конечно, скорость чтения/записи еще не достигла долей наносекунд, пока не отработаны технологические процессы создания микросхем MRAM объемом сотни мегабит и в компактных корпусах, стоимость не всегда та, что хотелось бы. Но уже сейчас можно с достаточной уверенностью утверждать, что технология MRAM преодолеет эти недостатки и через несколько лет постепенно начнет отвоевывать значительную часть рынка у существующих технологий памяти. На чем основаны такие утверждения? Рассмотрим более подробно особенности памяти MRAM, отличающие её от распространенных технологий (см. Табл.1).

Сравнительные характеристики основных типов памяти
Табл.1 Сравнительные характеристики основных типов памяти

     Энергонезависимая память EEPROM на данный момент находится на последних стадиях своего жизненного цикла. Значительно более медленная скорость работы, а также ограниченное количество циклов перезаписи по сравнению с MRAM не позволяют использовать эту память в качестве оперативной. Она годится только для хранения кода программ либо данных, не требующих частого изменения либо обращения к ним.
     Основным недостатком памяти типа Flash (флэш) является малое число циклов перезаписи. В зависимости от условий эксплуатации флэш-память может быть перезаписана примерно 10 тыс. - 1 млн. раз прежде, чем битовая ячейка перестанет функционировать. В отличие от флэш-памяти, число циклов перезаписи памяти MRAM бесконечно благодаря принципиально другой технологии работы битовых ячеек. Здесь программирование происходит путем изменения полярности магнитных слоев, а данная операция не разрушает материал, из которого состоят ячейки памяти.
     К другим недостаткам флэш-памяти стоит отнести низкую скорость записи, а также поблочный характер стирания/записи ячеек памяти. В MRAM можно выполнять любые операции над отдельными ячейками независимо. Кроме того, магниторезистивная память не требует предварительного стирания бита перед его перезаписью.
     Динамическая память DRAM требует частой регенерации ячеек для сохранения данных, что приводит к повышенному потреблению электроэнергии и не позволяет использовать ее в качестве энергонезависимой памяти.
     Статическая память SRAM не является энергонезависимой. К тому же, вследствие низкой плотности ячеек технология SRAM не позволяет создавать память значительного объема (десятки - сотни мегабит) в малом форм-факторе.
     Статическую память с резервным батарейным питанием (Battery BackedSRAM) можно назвать универсальной памятью, но с существенными ограничениями. Встроенные батареи имеют ограниченный срок службы, лимитированную емкость вследствие компактных размеров батареи, а ее наличие в устройстве создает дополнительные проблемы при хранении, монтаже и эксплуатации памяти. Нельзя забывать и про сильную температурную зависимость характеристик батареи и дополнительные сложности при утилизации устройств.
     Скорость записи/стирания памяти MRAM больше, чем у Battery Backed SRAM. Отсутствие батареи означает большую надежность и долговечность памяти MRAM, независимость ее рабочих характеристик от температуры во всем диапазоне, определенно производителем.
     Энергонезависимая ферроэлектрическая память FRAM до недавнего времени наиболее полно соответствовала определению "универсальной памяти" из всех доступных на рынке серийно выпускаемых микросхем. Однако и у нее есть ряд недостатков, самый серьезный их которых заключается в большом размере ее ячеек. Благодаря усилиям разработчиков он постепенно приближается к физическому пределу, за которым дальнейшее уменьшение габаритов сопряжено с серьезными техническими и технологическими проблемами. Однако при этом ячейки остаются достаточно крупными, что не позволяет создавать микросхемы памяти большого объема с малыми габаритами. На сегодняшний день объем памяти микросхем FRAM составляет от единиц килобит до единиц мегабит. Производители предпринимают попытки создать память объемом десятки мегабит, однако серийное производство микросхем объемом 16, 32 либо 64 Мбит если и будет возможно, то не раньше чем через 3-5 лет.
     Технология MRAM не накладывает ограничений на объем памяти. По сравнению с FRAM скорость чтения/записи ячеек памяти MRAM ощутимо выше.
     Модули памяти FRAM требуют повторной перезаписи данных в ячейки после считывания. Этот эффект связан с деградацией битовых ячеек памяти FRAM при операции чтения. Как следствие, это может привести к потере данных, если произойдет случайное отключение питания вовремя операции чтения, что для энергонезависимой памяти является очень существенным недостатком.

СТРУКТУРА И ФУНКЦИОНИРОВАНИЕ БИТОВЫХ ЯЧЕЕК MRAM

     Первый коммерческий продукт, использующий технологию MRAM, микросхема MR2A16A состоит из массива ячеек памяти, каждая из которых содержит один транзистор и один магнитный туннельный переход (1T1MTJ). Магнитный туннельный переход (MTJ) является основой битовой ячейки MRAM. Он состоит из очень тонкого диэлектрического слоя оксида алюминия (AlOx), помещенного между двумя магнитными слоями. Каждый из магнитных слоев имеет свой вектор магнитного поля. Верхний магнитный слой называют свободным слоем, он может изменять вектор своего поля. Магнитный слой основания называют фиксированным слоем, вектор его магнитного поля заблокирован и не изменяется.
     Направление вектора магнитного поля свободного слоя определяет состояние бита как логического нуля или единицы. Если векторы намагниченности свободного слоя и фиксированного слоя сориентированы в одном направлении, сопротивление структуры MTJ низкое (см. Рис.1). Если векторы намагниченности свободного и фиксированного слоев развернуты на 180° относительно друг друга(противоположны), сопротивление структуры MTJ высокое. Величина сопротивления перехода MTJ определяет, будет ли прочитано содержимое ячейки как "0" или "1" при прохождении через ячейку тока чтения.
     Во время операции установки бита магнитный вектор свободного слоя принимает одно из двух возможных состояний. Направление вектора поля задается с помощью внутренних медных проводников, расположенных в перпендикулярных направлениях относительно друг друга на вершине и в основании структуры MTJ. Импульсы тока, протекающего через перпендикулярно расположенные медные проводники, создают магнитное поле, которое изменяет намагниченность свободного слоя той битовой ячейки, которая находится в области перекрещивания проводников (см. рис. 2).
     Такая трехслойная структура повышает скорость и стабильность операций стирания/записи, однако требует более высокого тока для

Рис.1 Магнитные слои битовой ячейки 1T1MTJ памяти MRAM для значений "0" и "1"

выполнения этих операций, чем ячейки традиционной памяти. Однако на практике среднее потребление остается на том же уровне, так как при записи байта данных не все биты требуют изменения, если только мы не меняем значение байта с "FF" на "00" и обратно. Кроме того, процесс стирания/записи занимает крайне малое время порядка 25 нс. В результате по показателю потребления микросхема памяти типа MRAM выигрывает по сравнению с другими типами ПЗУ, которые, к тому же, существенно медленнее.
     При проектировании памяти MRAM, пригодной для серийного производства, разработчики столкнулись с серьезной проблемой, а именно с высокой чувствительностью к случайному перемагничиванию. При изменении определенного бита памяти высока вероятность того, что свободный магнитный слой соседних битов может быть также непреднамеренно изменен. Для повышения стабильности процесса установки бита, и устранения эффекта непреднамеренного перемагничивания медные проводники с трех сторон закрыли специальным изолирующим экраном, предотвращающим паразитные наводки на соседние битовые ячейки. Кроме этого, изолирующий экран направляет и фокусирует магнитное поле только на целевую битовую ячейку, что позволило существенно снизить ток программирования. В итоге импульсы тока на линии 1 и линии 2 меняют вектор намагниченности свободного слоя определенной ячейки, не внося изменения, в остальные биты в том же ряду или столбце (см. рис.2).

Рис.2 Битовая ячейка 1T1MTJ: упрощенная структура
МИКРОСХЕМА ПАМЯТИ MR2A16A

     Микросхема MR2A16A является первым продуктом от компании Freescale в линейке микросхем памяти MRAM. Модуль памяти MR2A16A изготовлен по технологии 0,18 мкм и является уже вторым поколением устройств на базе данной технологии. Емкость микросхемы составляет 4 Мбит с организацией 256К Ч 16 бит. Управление осуществляется по стандартным входам: chip enable, write enable, output enable и upper/lower byte select, обеспечивающим гибкость системы и предотвращающим конфликтные ситуации при обращении к шине. В зависимости от состояния управляющих входов данные могут быть записаны/считаны как в 8-битном, так и в 16битном формате. Устройство также поддерживает полностью статические операции.
     Времена циклов чтения/записи/стирания малы, симметричны по длительности и составляют 35 нс. Диапазон рабочих напряжений микросхемы - 3…3,6 В, встроенная схема мониторинга питания предотвращает запись ячеек памяти при снижении уровня питающего напряжения более чем на 0,5 В относительно рабочего. Рабочий температурный диапазон микросхем MRAM образца 2006 г. составляет 0…70°С. Во втором квартале 2007 г. компания Freescale начнет серийный выпуск микросхем MR2A16A с рабочим диапазоном 40…105°С. В третьем квартале 2007 г. компания планирует анонсировать новые продукты на базе технологии MRAM. Ожидается, что следующими в линейке микросхем будут модули памяти объемом 1 Мбит и 16 Мбит.
     Микросхемы MR2A16A выпускаются в корпусе 44-TSOP (type-II) в соответствии с техническими условиями RoHS. В корпус микросхемы встроено защитное экранирование от внешних электромагнитных помех. Конфигурация выводов MR2A16A полностью соответствует микросхемам памяти типа SRAM, по принципу работы с памятью MRAM также схожа с SRAM. Поэтому чипы памяти MR2A16A могут применяться в существующих устройствах и системах, использующих память SRAM, без каких-либо изменений в схеме.
     Данные сохраняются в ячейках за счет намагниченности, а не за счет заряда, что позволяет сохранять информацию без регенерации и без питающего напряжения 10 лет и более. Переключение состояния битов осуществляется без перемещения атомов и электронов внутри материалов, поэтому отсутствует эффект постепенной деградации внутренней структуры битовой ячейки и обеспечивается стабильность характеристик памяти во время всего срока службы микросхемы. Благодаря этому число циклов перезаписи памяти MRAM практически бесконечно (более 1016), а структура ячеек памяти и рабочие характеристики не деградируют в процессе эксплуатации во всем диапазоне рабочих температур и напряжений.
     Эксперименты показали, что ячейки памяти MR2A16A выдерживают более 58 трлн. циклов записи и стирания, работая в наихудших эксплуатационных условиях. До настоящего времени не было зарегистрировано ни одного сбоя в работе ячеек памяти, и эксперимент по тестированию количества циклов записи/стирания ячеек памяти MRAM продолжается. В ходе испытаний микросхемы MR2A16A работали на частоте 4 МГц при температуре окружающей среды 90°С и на частоте 28,5 МГц при температуре окружающей среды 70°С.

ОБЛАСТИ ПРИМЕНЕНИЯ ЭНЕРГОНЕЗАВИСИМОЙ ПАМЯТИ MRAM

     На сегодняшний день основными факторами, сдерживающими начало массового применения памяти MRAM, являются стоимость микросхем, скудость линейки продуктов с различным объемом памяти, а также новизна технологии. Пока разработчикам доступна только одна микросхема объемом 4 Мбит. По мере удешевления технологии производства и появления новых продуктов MRAM от различных производителей стоимость элементов памяти будет стремительно снижаться. Однако уже сейчас можно говорить о многочисленных областях электронной промышленности, в которых использование магниторезистивной памяти будет экономически оправдано.
     Наиболее высока потребность в памяти MRAM в коммерческих системах, где требуется сохранение данных при различных нештатных ситуациях, например аварийном отключении питающего напряжения. Эта память является также идеальным решением для различных регистраторов и устройств типа "черного ящика". Данные могут сохраняться на скоростях, сравнимых с памятью типа SRAM, при этом они не будут утеряны вследствие отключения электроэнергии.
     Другим ключевым рынком применения памяти MRAM являются приложения, в которых используется память SRAM с батарейным резервным питанием либо NVSRAM (см. рис. 4). По экономической эффективности, техническим и потребительским параметрам замена памяти на MRAM в подобного рода приложениях оправдана более чем в 80% случаев.
     Рынок устройств автомобильной электроники будет в числе первых и основных потребителей магниторезистивной памяти. Осталось дождаться появления микросхем MRAM с автомобильным либо промышленным температурным диапазоном, тем более что уже давно назрела потребность в более надежной, долговечной, быстрой и эффективной памяти, нежели распространенная флэш-память. В одних электронных системах автомобиля уже сейчас процесс записи не успевает за потоком исходных данных, в других данные необходимо сохранять достаточно часто - все это заставляет разработчиков систем идти на различные ухищрения.
     Используя MRAM, автомобильные аварийные регистраторы также будут в состоянии собрать и хранить значительное количество данных непосредственно перед и во время аварии, что может быть крайне полезно, например, для страховых компаний.
     К другим областям применения памяти MRAM можно отнести следующие:

  • персональные компьютеры, офисная техника (мобильные и стационарные ПК, принтеры, факсы, сканеры и т.п.);
  • мобильные, носимые устройства (сотовые телефоны, MP3-плееры, фото- и видеокамеры, КПК и т.п.);
  • замена ОЗУ с резервным батарейным питанием;
  • хранение первоначальных установок и программ загрузчиков в разнообразных устройствах
  • энергонезависимые буферы хранения оперативной информации в серверах и RAID-массивах;
  • счетчики и расходомеры (электричество, тепло, вода и прочее);
  • авиационная техника, военные приложения;
  • охранно-пожарные системы (журналы событий и т.п.);
  • хранение данных в различном медицинском оборудовании;
  • расширение оперативной памяти в коммуникационных приложениях и приложениях, требующих частого обращения к обрабатываемым данным.

ПЕРСПЕКТИВЫ РАЗВИТИЯ

     Компания Freescale планирует развивать продукты MRAM в двух направлениях: выпуск отдельных чипов памяти и интеграция в собственные 8-, 16- и 32-разрядные микроконтроллеры и микропроцессоры.
     По мере совершенствования технологии магниторезистивной памяти архитектура встраиваемых систем подвергнется радикальной перемене. В настоящее время MRAM имеет наилучший потенциал для замены комбинаций различных типов памяти, например SRAM + флэш + ПЗУ, применяемых сейчас в большинстве микроконтроллеров и систем на кристалле, так как обладает достоинствами всех перечисленных типов. Таким образом, станет возможна архитектура микроконтроллеров с единственной универсальной памятью (single-memory architecture).
     Через 3-5 лет возможно появление персональных компьютеров с магниторезистивной памятью. На первоначальной стадии начнется производство ПК, в которых флэш-память для хранения базовой системы ввода/вывода (т.н. BIOS) будет заменена на память MRAM. В дальнейшем по мере увеличения объемов и скоростей работы MRAM начнется постепенная замена оперативной и кэш-памяти в ПК.
     Уже сейчас появляются портативные ПК, в которых накопители на жестких дисках заменяются памятью типа флэш. Если в процессе развития технологии MRAM не возникнет ограничений на создание памяти объемом десятки и сотни гигабит в компактном форм-факторе, следует ожидать появления быстродействующих накопителей для хранения прикладного программного обеспечения и данных. Это даст возможность создавать персональные компьютеры и другие системы и устройства, которые будут загружаться практически мгновенно по сравнению, например, с нынешними ПК, в которых процесс загрузки занимает от десятков секунд до нескольких минут. Кроме того, появится возможность возобновлять выполнение программ после включения устройства с того момента, на котором оно было прервано при выключении напряжения питания.
     В результате через несколько лет технология MRAM постепенно начнет не только осваивать новые области применения электронной памяти, но и сможет взять на себя значительную часть уже имеющегося рынка полупроводниковой памяти, заменяя распространенные сегодня энергонезависимые ЭСППЗУ, флэш, FRAM, а также наиболее популярные быстродействующие типы памяти, как статическая SRAM, динамическая DRAM и другие.

Были использованы источники :
1) Михаил соколов, Александр Гришин "Электронные компоненты". 2007 . № 1.
2) Lee T. MRAM Joins the Memory Market//Electronic Engineering Times - Asia, October 16-31, 2006.
3) www.freescale.com/mram
4) Валентинова М. Полупроводниковая энергонезависимая память. На перепутье // Электроника. Наука, технология, бизнес. 2003. № 5.
5) Зайцев И. Сравнение новых технологий энергонезависимой памяти // Компоненты и технологии. 2004. № 4.

Магниторезистивная память MRAM - теория

 |  Контрольные вопросы  | 
© 2007 created by bolik